MTH 530
Abstract Algebra I
By Aymar Eadawi

Name: Yarmine El-Ashi
ID. $\quad 7313$.
\qquad

HW ONE: MTH 530, Fall 2017

Ayman Badawi

QUESTION 1. Let $(D, *)$ be a group, F_{1}, F_{2} be subsets of D where $F_{1} \nsubseteq F_{2}$ and $F_{2} \nsubseteq F_{1}$. Then $L=F_{1} \cup F_{2}$ is a subset of D. Assume that $\left(F_{1}, *\right)$ and $\left(F_{2}, *\right)$ are groups. Prove that $(L, *)$ is never a group.
QUESTION 2. We know that if $n, m \in N^{*}$, then there are unique $q, r \in N$ such that $m=n \cdot q+r, 0 \leq r<n$. Now let ($D, *$) be a group and $a \in D$ such that $|a|=k$.
(i) Assume $k<\infty$ and suppose that $a^{m}=e$ for some $m \in N^{*}$. Prove that $k \mid m$ (i.e., k is a factor of m , i.e., k divides m)
(ii) (converse of (i)). Assume $k<\infty$. Let m be a positive integer such that $k \mid m$. Prove that $a^{m}=e$.
(iii) Assume $k<\infty$. Prove $|a|=\left|a^{-1}\right|=k$
(iv) If $|a|=\infty$, then prove that $\left|a^{-1}\right|=\infty$
(v) Assume $|a|=\infty$. Prove that the elements of the set $\left\{a^{0}=e, a, a^{2}, \ldots, a^{n}, \ldots ..\right\}$ are distinct. Hence $|D|=\infty$.
(vi) ((iv) might be helpful). Let F be a finite subset of D (i.e., $|F|<\infty$). Suppose that $(F, *)$ is closed (i.e, $a * b \in F$ for every $a, b \in F)$. Prove that $(F, *)$ is a group
(vii) Assume that $b^{2}=e$ for every $b \in D$. Prove that $(D, *)$ is abelian.

QUESTION 3. Let $D=\{6,12,18,24\}$. Define* on D such that for every $a, b \in D$ we have $a * b=a \cdot b$, where • means multiplication module 30. Construct the Caley's table of (D, \cdot). By staring at the table you should conclude that (D, \cdot) is an abelian group (Since $\left(Z_{30}, \cdot\right)$ is associate, we conclude that (D, \cdot) is associate).
(i) What is $e \in D$?
(ii) Let $a=12$ What is $|a|$?.
(iii) Let $k=|12|$, find a^{2}, a^{3}, a^{4}. What can you conclude about $\left\{a, a^{2}, a^{3}, a^{4}\right\}$?
(iv) Let $k=|24|$, find a^{2}, a^{3}, a^{4}. Is this different from (iii)?

QUESTION 4. (i) Let $(D, *)$ be a group and fix $a, b \in D$. Convince me that the equation $a * x=b$ has a unique solution in D. What is the solution?
(ii) Let $\left(D_{n}, o\right)$ be the symmetric group on n-gon. We know that $|D|=2 n$ (note that $n \geq 3$ is a positive integer). Assume that $a \in D_{n}$, where a is a rotation, say $a=R_{k\left(\frac{200}{n}\right)}$ (i,e., rotation about the center $k \frac{360}{n}$ degrees clockwise, and assume $1 \leq k \leq n$).
a. What is a^{-1} ? Is a^{-1} a rotation or a reflection?
b. ((i) might be helpful). Let $b \in D_{n}$, where b is a reflection. Prove that $b o a$ is a reflection.[Your proof should not exceed 2 lines].
c. ((b) and (i) might be helpful) Let $R=\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ be the set of all rotations in D_{n}, note that R_{i} is the rotation about the center $i \frac{360}{n}$ degrees clockwise. Let $b \in D_{n}$ be a reflection. Prove that $\left\{b \circ R_{1}, b \circ R_{2}, \ldots, b \circ R_{n}\right\}$ is the set of all reflections. [This is a nice result, it means in order to get all reflections, you only need to find one reflection, say b, and then just composite b with each rotation]
d. Let $b \in D_{n}$ where b is a reflection. What is $|b|$?
e. Consider $\left(D_{6}, o\right)$. Let $R_{1}=R_{60}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 5\end{array}\right), b=(R e)_{1}=(26)(35)$ be a reflection. Note that $R_{2}=R_{1}^{2}=R_{1} \circ R_{1}$, and in general $R_{i}=R_{1}^{i}=R_{i-1} \circ R_{1}$. So you can find all the rotations (without sketching!). Now use the idea in (c) to calculate all reflections.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, พwห.ayman-badawi.com

QUEsTION 1: Let $\left(D_{1}+\right)$ be a group, F_{1}, F_{2} be subsets of D where $F_{1} \nsubseteq F_{2}$ and $F_{2} \nsubseteq F_{1}$. Then $L=F_{1} \cup F_{2}$ is a subset of D. Assume mat $\left(F_{1}, x\right)$ and $\left(F_{2}, r\right)$ are grapes. Prove mat $(L, *)$ ir never a group.
Proof: Let $a \in F_{1} \Rightarrow a \in F_{2}$ since $F_{1} \nsubseteq F_{2}$.
Let $b \in F_{2} \Rightarrow b \notin F_{1}$ since $F_{2} \neq F_{1}$.
Suppose $(L, *)$ io a group where $L=F_{1} \cup F_{2}$.
Then we have: $a * b=c \in L=F_{1} \cup F_{2}$.

$$
\Rightarrow \quad a * b=c \in F_{1} \text { or } F_{2} \text {. }
$$

(1) Suppose $c \in F_{1}$,

$$
\begin{aligned}
a * b & =c \in F_{1} . \\
a^{-1} *(a * b) & =a^{-1} * c
\end{aligned}
$$

since we are assuming $(1,+)$ to be a grope, we are assuming the associative and identity conditions to be valid

$$
\longleftarrow\left(a^{-1} * a\right) * b=a^{-1} * c
$$

Sine $\left(F_{1} *\right)$ io a group $a \in F_{1} \Rightarrow a^{-1} \in F_{1}$, and we have $c \in F_{1} \Rightarrow a^{-1} * c \in F_{1}$
So $b \in F, \Rightarrow$ we have a contradiction since $b \notin F_{1}$ for $F_{2} \nsubseteq F_{1}$.
(2) Suppose
since we are assuming $(L,+)$ to be a group, we are assuming, the associative and identity condition to be valid.
$5 \sqrt[6]{6}$
So $a \in F_{2} \Rightarrow$ we have a contradiction since $a \notin F_{2}$ for $F_{1} \subseteq F_{2}$.
$\therefore(L, *)$ can never be a grap.

QUESTION 2: We know if $n, m \in N^{*}$, men mere are unique $q, r \in N$ 3.1. $m=q \cdot n+r, 0 \leqslant r$. Now let $(D, *)$ be a group and $a \in D$ sit. $|a|=k$.
(i) Assume $k<\infty$ and rypo.e that $a^{m}=e$ for sone $m \in N^{*}$ Prove mat k / m (i.e. k ir a factor of m, or k alder m). proof: Sppore k dues not divide $m, q \cdot k+r$, where $0 \leq r<k$. men we can write m as $\Rightarrow m$

Let

$$
\begin{aligned}
& a^{m}=e \\
& a^{\left.q^{k+r}\right)}=e \text {. } \\
& a^{q k} * a^{r}=e . \\
& \left(a^{k}\right)^{q} * a^{r}=e \text {. } \\
& (e)^{q} \times a^{r}=e \\
& e * a^{r}=e \text {. } \\
& \Rightarrow \quad a^{r}=e \leftarrow
\end{aligned}
$$

Giver $0 \leqslant r<k$,
But here we have a - contradiction since $|a|=k$, hat ir k is the smallest integer $\in N^{*}$ s.t. $a^{k}=e$.
\therefore We must have k / m.
(ii) (convere $1(1)$) Assume $k<\infty$. Let m be a positive integer 5.1. $k l m$. Prove that $a^{m}=e_{k} / m \Rightarrow m=n k$ for some $n \in N^{*}$ Proof: $\begin{aligned} & \text { suppose } m \in N^{*} \text { sit. } \\ & a^{k^{k}}=a^{n}=\left(a^{n} \overline{\overline{1}}=(e)^{n}=e .\right.\end{aligned}$

$$
\begin{aligned}
& =\text { j } \\
& \text { sine } k \text { is smallest the integer } \\
& |a|=k \Rightarrow a^{k}=e
\end{aligned}
$$

$\sqrt[6]{6}$
(iii) Assume $k<\infty$. Prove $|a|=\left|a^{-1}\right|=k$.

Pray: Spare k is finite, mat ir $k<\infty$, and we have $|a|=k$ we want to show hat $\left|a^{-1}\right|=k$.
First, let is find $\left(a^{-1}\right)^{k}$

$$
\begin{aligned}
& \text { let us find }\left(a^{-1}\right)^{k} \\
& e=a^{0}=a^{(k-k)}=a^{k+}=a^{k}+a^{-k}=e \times a^{-k}=a^{-k} \\
& \qquad a^{-k}=e . \quad<\infty \text {. (finite) and } r \leqslant k .
\end{aligned}
$$

suppore $\left|a^{-1}\right|=r$, then $r<\infty$. (finite) and $r \leqslant k$
(1) (Deny) : Suppose $r<k$, wen $k=r+n$ for some the integer $n<k$

$$
\begin{aligned}
r & =k-n \cdot\left(a^{-1}\right)^{-n} \\
e=\left(a^{-1}\right)^{r} \cdot a^{-1}(k-n) & =\left(a^{-1}\right)^{k} k\left(\left(a^{-1}\right)^{-1}\right)^{n} \\
& =\left(a^{-1}\right)^{k}{ }_{k}{ }^{n} \\
& =a^{n}+a^{n}
\end{aligned}
$$

(2) $\Rightarrow a^{n}=e \Rightarrow$ But here we have a contradiction since $n<k$ in e smallest
$|a|=k$, that in k ir k.

$$
\begin{aligned}
& a=e \quad \\
& \\
& \text { ate } \begin{array}{l}
\text { integer } \operatorname{sit} a^{k}=e .
\end{array} \\
& \text { the } \Rightarrow\left|a^{-1}\right|=|a|=k .
\end{aligned}
$$

(2) (Direct me mod):

$$
\left|a^{-1}\right| \leq|a|
$$

But we have $\left(a^{-1}\right)^{-1}=a$

$$
\begin{aligned}
& \text { ave } \quad|a| \leq\left|a^{-1}\right| \\
& \therefore \quad|a|=l \\
& \Rightarrow \quad\left|a^{-1}\right|=|a|=k
\end{aligned}
$$

(iv) If $|a|=\infty$, then prove that $\left|a^{-1}\right|=\infty$

If $|a|=\infty \Rightarrow\left|a^{-1}\right|=\infty$.
\therefore To prove the above statement, we can prove ir contrapositive. $\left\{\begin{array}{l}\text { that io } \\ \text { if } \\ x\end{array}\right.$ by Let $\left|a^{-1}\right|=k$ where $k<\infty \quad|a|=\left|a^{-1}\right|=k$.

$$
\begin{aligned}
& \text { we have }|a|=k<\infty \\
& \Rightarrow \quad|a|
\end{aligned}
$$

olin
(v) Assume $|a|=\infty$. Prove mat the element of me set $\left\{a^{0}=e, a, a^{2}, \ldots, a^{n}, \ldots\right\}$ are drtinct. Hence $|D|=\infty$.
Proof: Suppose $|a|=\infty$, and let $a^{n}=a^{m}$ for some $n, m=k \in \mathbb{Z}^{+}$
s.t. $n \neq m$. $a^{n+k}, a^{n}+a^{k}$
ne have,
since $a^{m}=a^{n}$, men according to our
assumption $a^{k}=e$, but nix is a contradiction

(vi) $[$ (iv) might te helpful]. Let F be a finite subset of D (i.e. $|F|<\infty$) Suppose mat $(F, *)$ ir closed (i.e. $a * b \in F$ for every $a b \in F$)
Prove that (F
(1) cLosure: We have $a+b \in F \quad \forall a, b \in F$, thus conure is satisfies
(2) associative: Since $(D,+)$ ir a grope, and $F i b \in \in \in D, c \in D$ suite subere of D, $F S D$, We $a, b, c \in F \Rightarrow$ the associative condition is valid
since D ir a grope, the
since $(a+b)+c=a+(b+c) \forall a, b, c \in D$.
that is rust have $(a+b)+c=a \sqrt{ }+c) \quad \forall a, b, c \in F$.
(3) identity

- We need
sha $e \in F$ ir closed
(4) inverse: Let $a \in F$, we need lo how mat $a^{-1} \in F$ Since ($F, *$) ir closed $\Rightarrow\left\{e, a, a^{2}, \ldots, a^{n}, \ldots\right\} \in F^{+}$ Bat we know mat F ir finite $a^{m-n}=e$
$\sum_{\prod_{18}^{\text {If }} \text { m-n>1 }} a^{m-n} \cdot a=$ $\begin{array}{ll}\text { If } m-n=1, \text { then } a^{-1}=a^{0}=e \\ \text { If }(m-n)>1, & \text { then }(m-n)-1>0\end{array}$
$B \in F$
$e \in F$

$$
\begin{aligned}
& a^{0}=e \theta \\
& \text { we cain ot } \\
& \text { chain this }
\end{aligned}
$$

(iii) Assume $k<\infty$. Prove $|a|=\left|a^{-1}\right|=k$.

Pray: sups. k i init, mat i $k \leq \infty$, and we have $|a|=k$ we wont to show hat $\left|a^{-1}\right|=k$.
Frost, let us find $\left(a^{-1}\right)^{k}$
$e=a^{0}=a^{(-k)}=a^{k+(-k)} a^{k}+a^{-k}=e \cdot a^{-k}=a^{-k}$

$$
a^{-x}=e
$$

$r<\infty$ (finite) and $r \leqslant k$

$$
\begin{aligned}
& \left.e=\left(a^{-1}\right)^{r}=a^{-1}\right)^{(k-r)}=k-n \cdot\left(a^{-1}\right)^{k} *\left(a^{-1}\right)^{-n} \\
& \left.=\left(a^{-1}\right)^{k} *\left(a^{-1}\right)^{-1}\right)^{n} \\
& \left.e=\left(a^{-1}\right)=a \quad\left(a^{-1}\right)^{k} *\left(a^{-1}\right)\right)^{n}
\end{aligned}
$$

(i) (Deny) Suppose $r<k$ met
contradiction since is mine smallest $|a|=k$, that is $k a^{k}=e$.
$\begin{cases}4 & \begin{array}{l}|a|=k, \text { minder sit. } a^{k}=e . \\ \\ \text { are integer } \\ \left|a^{-1}\right|=|a|=k .\end{array}\end{cases}$
(2) (Direct me mod)
3. we have $\left(a^{-1}\right)^{-1}=a$
(iv) If $|a|=\infty$, then prove that $\left|a^{-1}\right|=\infty$ We are trying to prove me following statement:
If $|a|=\infty \Rightarrow\left|a^{-1}\right|$

To prove the above statement, we can prove ir contraposithe that io show that.
(vs) Let $\left|a^{-1}\right|=k$ where $k<\infty \quad|a|=\left|a^{-1}\right|=k$
$\begin{aligned} & \text { using (iii) we have }|a|=\left|a^{-1}\right| \\ & \Rightarrow|a|=k<\infty\end{aligned}$

Ww
(vi) Assume that $b^{2}=e$ to every $b \in D$. Prove mat $(D,+)$ is abclian. Prof To prove mat $(D, *)$ is abelian we need to how

$$
\begin{aligned}
& \text { mat } b=b * a \quad \forall a, b \in D \\
& a * b=a+b \text {, }
\end{aligned}
$$

let $a, b \in D$, and let $c=a+b$, where $c \in D \sin c$ $(D, *)$ ir a gop, then we have $c^{2}=e$

$$
\begin{aligned}
& c^{2}=e \text {. } \\
& (a \neq b) *(a+b)=e \\
& a *(b * a) * b=e \\
& (a * a) *(b+a) * b=a * c \\
& a^{2}+(b \times a)+b=a \\
& e \times(b+a) \times b=a \quad \text { yo } \\
& (b+a)+b=a \text {. } \\
& (b+a)+b^{2}=a * b \text {. } \\
& (b * a) * e=a * b \\
& b * a=a * b \\
& \text { Thus, we have shown hat }(D, *) \text { ir aeolian. helle! deal }
\end{aligned}
$$

Question 3: LA $D=\{6,12,18,24\}$
Define * on D st. for every $a, b \in D$ we have $a \times b=a \cdot b$ Where means multiplication mod 30 , by staring at me construct Cay, Caley'r table of (1,7 ($D,-$) is an abelson grep. Caley'r table for (D, \cdot)

.	6	12	18	24
6	6	12	18	24
12	12	24	6	18
18	18	6	24	12
24	24	18	12	6

(1) closure: using the coly's table we can see mat $\forall a, b \in D$ we have $a \cdot b \in D$
(2) Associative: Since $\left(Z_{30}\right)$. is associative, we conclude mat $(D, \dot{)}$) io aho associative.
(3) Identity: In mir cane we have $e=6$, s.t. $6 . b$
$\forall b \in D$, we have $b .6=6 . b$
(4) Inverse. In mir cane we have $6^{-1}=6,12^{-1}=18,18=12,24=24$

$$
\begin{aligned}
& \text { In mir case we have } b^{-1} \cdot b=b \cdot b^{-1}=e \text {. } \\
& \therefore \forall b \in D, \exists b^{-1} \in D \text { set. }
\end{aligned}
$$

In addition, from the caley'r table we can see that $\forall a, b \in D$ we have $a \cdot b=b \cdot a$
(i) What is $e, \in D 2 e=6$. WV
(ii) Let $a=12$. What is |a|?

$$
\begin{aligned}
& 12^{1}=12 \\
& 12^{2}=12 \cdot 12=24 \\
& 12^{3}=(12)^{2} \cdot 12=24 \cdot 12=18 \\
& 12^{4}=(12)^{3} \cdot 12=18 \cdot 12=6=e \\
& \therefore \quad|a|=4
\end{aligned}
$$

(iii) Let $k=\left||2|\right.$, find a^{2}, a^{3}, a^{4}
What $a n$ you candide $\left.a^{2}, a^{3}, a^{4}\right\}$.
.. $a^{2}=24, a^{3}=18, \quad a^{4}=6$
. $1 /\left\{a, a^{2}, a^{3}, a^{4}\right\}=\{12,24,18,6\}=D$
(v) Let $k=124 \mid$, find a^{2}, a^{3}, a^{4}. Is this different from (iii).

$$
\begin{aligned}
& 24^{\prime}=24 \\
& 24^{2}=24.24=6
\end{aligned}
$$

$$
\therefore \quad|24|=2
$$

$$
\begin{aligned}
& 24^{3}=(24)^{2} \cdot 24=6 \cdot 24=24 \\
& 24^{4}=(24)^{3} \cdot 24=24.24=6 \\
& \therefore\left\{a, a^{2}, a^{3}, a^{4}\right\}=\{24,6,24,6\}=\{24,6\} \subseteq D
\end{aligned}
$$

Y / v Different from (iii).

Question 4: (i) let $(D, *)$ be a grap and fix $a, b \in D$.
Convince me that the equation $a \times x=b$ has a unique solution in D. What is the solution.

- Suppose we have $y \in D$, set $a * y=b$, to prove that the equation ar $x=b$ has a unique solution in D, we need to show that $x=y$.
since $a+y=b$ and $a * x=b$

$$
a \times y=a \times x
$$

Since $a^{-1} \dot{r}$ unique in D, multiply the above by a^{-1}

$$
\begin{aligned}
a^{-1} \times a * y & =a^{-1} \times a * x \\
e * y & =e * x
\end{aligned}
$$

$\begin{aligned} & \text { ex } y= \\ & y=x, \text { ins wine solution } \\ & \Rightarrow \quad \text { is unique in } D .\end{aligned}$

- The solution ir:
$4 / 4$

$$
\begin{array}{r}
a * x=b \\
a^{-1} \times a * x=a^{-1} * b \\
e * x=a^{-1} * b \\
x=a^{-1} * b
\end{array}
$$

(ii) (a) What ir a^{-1} ? Ir a^{-1} a rotation or a freflection?

$$
\begin{aligned}
& \text { a) What it } a \text {. Ir a a rotarian } R_{k}^{-1}=R_{(n-k)}\left(\frac{360}{n}\right) \\
& \text { given } a=R^{-1}
\end{aligned}
$$

where a^{-1} is a rotation.
(b) $\left(\right.$ (i) might bot helpfoi). Let $b \notin D_{n}$ when bit a reftection.

Prove that b ola is /a reflection.
wet $r=R\left(\frac{360}{n}\right)$.

$$
\begin{aligned}
& \text { reflection. } \\
& r^{n}=R^{n}\left(\frac{360}{n}\right)=R_{360}=e^{\circ}=r^{\circ}
\end{aligned}
$$

given $a=R_{k}\left(\frac{360}{n}\right)$

$$
\begin{aligned}
& \therefore a=\underbrace{\text { roronor }}_{k \text { times }}=r^{k} .
\end{aligned}
$$

$$
\begin{aligned}
& =r^{k} 0 r^{(n-k)}=r^{k+(n-k)}=r^{n}=e . \\
& a^{-1} \circ a=r^{(n-k)} 0 r^{k}=r^{(n-k)+k}=r^{n}=e \text {. }
\end{aligned}
$$

(if) (b) [(i) might be helpful]. Let $b \in D_{n}$, where b is a reflection.
Prove that boa is a reflection.
Proof: let $c=b o a$, and suppose c ir a rotation, thur we can write c as: $c=r_{n-k}^{m}$ for some $1 \leqslant m \leqslant n$ Let $a=r^{k}$, and $a^{-1}=r^{n-k}$

$$
\begin{aligned}
& b 0 a=c \\
& b o a=r^{m}
\end{aligned}
$$

using (i) we have

$$
\begin{aligned}
& \text { we have } \\
& b=r^{m} a^{-1}=r^{m} o r^{n-k} \\
& m+(n-k)
\end{aligned}
$$

$\Rightarrow b=r^{m+(n-k)}$ we have b represented
4/4 as a rotation, bit this giver us a contradiction Since b ir a reflection.
$\therefore \quad c=$ boa must be a reflection.
(c) $[(b)$ and (i) might be helpful)

Let $R=\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ be the set of all rotations in D_{n}, note mat R_{i} is the rotation about the center $i \frac{360}{n}$ degrees dackwise. Let $b \in D_{n}$ be a reflection. Prove that $\left\{b \circ R_{1}\right.$, bo $\left.R_{2}, \ldots, b \circ R_{n}\right\}$ is the set of all reflections.
(1) Using (b) $\left\{b 0 R_{1}\right.$, bo $\left.R_{2}, \ldots, b \circ R_{n}\right\}$ is a set of reflection, since $\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ is the set of all rotations in D_{n}.
(2) In addition, $\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ consists of distinct elements and since we are just composing then with b, men $\left\{b \circ R_{1}, b \circ R_{2}, \ldots, b \circ R_{n}\right\}$ the ret of n reflection, also consists of n dirtinct elements, which are all the reflections in D_{n}.
$4 / 2$
(d) Let $b \in D_{n}$ where b ir a reflection. What is $|b|$?

$$
\begin{array}{rlr}
b o b & =e \\
\Rightarrow b o b & =b^{2} \quad \therefore \quad|b|=2
\end{array}
$$

(e) Consider $\left(D_{6}, 0\right)$. Let $R_{1}=R_{60}=\left(\begin{array}{lll}1 & 2 & 34\end{array}\right)$
$b=\left(R_{e}\right)_{1}=(26)(35)$ be a reflection.
Note that $R_{2}=R_{1}^{2}=R_{1} \circ R_{1}$ and in general $R_{i}=R_{1}^{i}$

$$
=R_{i-1}, 0 R_{1}
$$

Now use the idea in (C) to calculate all reflections.
Let $R=\left\{R_{1}, R_{2}, R_{3}, R_{4}, R_{5}, R_{6}\right\}$ be the ret of all rotation in D_{6}

$$
R e=\left\{b \circ R_{1}, b \circ R_{2}, b \circ R_{3}, b \circ R_{4}, b \circ R_{5}, b \circ R_{6}\right\}
$$

be the set of all reflections in D_{6}.

$$
\begin{aligned}
& R_{1}=\left(\begin{array}{lll}
1 & 2 & 4
\end{array}\right) \\
& R_{2}=R_{1} \circ R_{1}=(123-56) \circ(123456) \\
& =(135)(246) \text {. } \\
& R_{3}=R_{2} \circ R_{1}=[(135)(246)] \circ(123456) \\
& =(14)(25)(36) \\
& R_{4}=R_{3} \circ R_{1}=[(14)(25)(36)] \circ(1223456) \\
& =\left(\begin{array}{lll}
1 & 5
\end{array}\right)\left(26^{-4}\right) \\
& R_{5}=R_{4} \circ R_{1}=[(153)(264)] \cup\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
\hline
\end{array}\right. \\
& =(165432) \\
& R_{6}=R_{5}{ }^{\circ R_{1}}=(165432) \circ(123456) \\
& =(1)=e \\
& b \circ R_{1}=[(26)(35)] 0(123456) \\
& =(16)(25)(34) \\
& \text { bo } \left.R_{2}=[(26)(35)] 0[135)(246)\right] \\
& =(15)(24) \\
& \text { bo } R_{3}=[(26)(35)] 0[(14)(25)(36)] \\
& =(14)(23)(56)
\end{aligned}
$$

$$
\begin{aligned}
& \text { bo } R_{4}=[(26)(35)] \circ[(153)(264)] \\
& =\left(\begin{array}{ll}
1 & 3
\end{array}\right)(46) \\
& b_{0} R_{5}=[(26)(35)] \circ\left[\left(\begin{array}{lllll}
1 & 6 & 5 & 4 & 3 \\
2
\end{array}\right)\right] \\
& =(12)(36)(45) \\
& b_{0} R_{6}=b_{0} e=b=(26)(35)
\end{aligned}
$$

MTH 530
Abstract Algebra I. Aymar Badami.

Name: Yarmine El-Ashi

$$
\text { I.D.\#: } 7313 \text {. }
$$

dion 1 ; ilhet $(D, *)$ be a grap. Fix a positive integer m and let $F=\left\{a \in D \mid a^{m}=e\right\}$. Prove mar ($F, *$) is a subgroup of D.
(1) Clove: Let $a \in F \Rightarrow a \in D$ sit. $a^{m}=e$.

Let $b \in F \Rightarrow b \in D$ set. $b=e$.
Show that $a * b \in F D$, we have $a * b \in D$. Since $a \in D$ and $b \in D$ drop.

$$
\begin{gathered}
\text { since }(D .4 \\
(a * b)^{m}=a^{m} * b^{m}=e * e=e \\
(a * b) \in D \text { st. }(a \times b)
\end{gathered}
$$

since $\quad \therefore(F,+)$ ir closed.
(2) Associative: Since $F \subseteq D$ and D ir a grope, then $(F, *)$ ir associative.
(3) Identity: We need to show that $e \in F$

We have $e \in D$, and $e^{m}=e$ where m ir a positive integer $\Rightarrow \quad e \in F$.
(4) Inverse: Let $a \in F$, we need to show mat $a^{-1} \in F$

$$
\begin{aligned}
& \text { et } a \in F \text {, we need } \\
& \left(a^{-1}\right)^{m}=a^{-m}=\left(a^{m}\right)^{-1}=(e)^{-1}=e \\
& \Rightarrow a^{-1} \in F \text {. }
\end{aligned}
$$

Since all the above conditions are satisfied $\Rightarrow(F,+)$ is a group Since $F \subseteq D$, where $(D, *)$ ir a group $\Rightarrow(F, *)$ ir a subgroup of D.

You prove it from Scratch: Use ($\mathrm{a}^{\wedge}-1^{*} \mathrm{~b}$ in F)
Let a, b in F. We show $a^{\wedge}\{-1\}^{*} b$ in F. Since a, b in F, we have $a^{\wedge} m=b^{\wedge} m=e$.
Since D is abelian, $\left(a^{\wedge}\{-1\}^{*} b\right)^{\wedge} m=\left(a^{\wedge}\{-1\}\right)^{\wedge} m{ }^{*} b^{\wedge} m=\left(a^{\wedge} m\right)^{\wedge}\{-1\}^{*} b^{\wedge} m=(e)^{\wedge}\{-1\}^{*} e=e^{*} e=e$. Thus $a^{\wedge}\{-1\}^{*} b$ is in F.
(ii) Fix a positive integer n. We know that the equation $x^{n}-1$ hat exactly n distinct solutions over the complex C Now let $F=\left\{a \in C^{*} \mid a^{n}-1=0\right\}$. Prove mat $(F,$. ir a rugrap of $\left(C^{*},.\right)$, where. is the no real complex multiplication.
Proof: Let $F=\left\{a \in C^{*} \mid a^{n}-1=0\right\}$
Since $x^{n}-1=0$ has exactly n distinct solutions $\in C$ and $\sin e \quad x=0$ cannot be arowion live in
$\therefore|F|=n<\infty \Rightarrow F$ ir finite.
so we only need to show hat (F,.) ir clored : $a^{n}-1=0 \Rightarrow a^{n}=1$.
Let $a \in F \Rightarrow a \in C^{*}$ set.

$$
\begin{aligned}
& a^{n}-1=0 \quad \Rightarrow \quad b^{n}=1 \\
& b^{n}-1=0 \quad \Rightarrow \quad 1
\end{aligned}
$$

Fine $F \subseteq C^{*}$, st. $|F|<\infty$ and (F, \cdot)
(F, \cdot) ir a subgrap of $\left(C^{*},\right)$.
(iii) We Know $\left(Q^{*}\right.$,) is a group. Doer Q^{*} have a finite Good. So you from scratch. You used the result that a finite subset of a group is a subgroup iff it is closed. subgroup? If yer, what it it?
(ii) Construct a non-abelian group D, with exact with 12 elements. such that D has an abelian subs

$(D *)$ be a group and $a \in D$, st. $|a|=k<\infty, k \neq 1$. love that $F=\left\{a, a^{2}, \ldots, e=a^{k}\right\}$ ir a subgroup of D. we have $|F|=k<\infty \Rightarrow$ the set F ir finite, So we only need to show that F ir closed.
Let $a^{i} \in F$ and $a^{j} \in F$, show $a^{i} * a^{j} \in F$

$$
a^{i}+a^{j}=a^{i+j}
$$

Let $i+j=m, m$ can be written ac
$m=q^{k+r}$, where $q, r \in N$.

$$
\begin{array}{r}
(i+j)=a^{m}=a^{(q k+r)}=a^{k} \cdot a^{r}=e \cdot a^{r}=a^{r} \\
a^{(+2}=\bmod k, r m e r e r
\end{array}
$$

since $r=\bmod k$, ir the remainder of m / k.
$5 / 5$

$$
\begin{array}{ll}
& \text { and } \quad r \leqslant k \\
\Rightarrow & a^{i} * a^{j}=a^{r} \in F
\end{array}
$$

Since $|F|<\infty$ and F is closed $\Rightarrow F$ ir a subgroup of (D, x)
(Vi) Let F_{1} be a subgroups of $\left(D_{1}, *_{1}\right)$ and F_{2} be a subgroup of $\left(D_{2}, k_{2}\right)$. Prove mat $F_{1} \times F_{2}$ ir a subgroup
Subgroup of $D_{1} \times D_{2}$. ${ }^{\text {of }}\left(D_{2}, *_{2}\right)$ ore both grass $\Rightarrow\left(D_{1}, D_{2}, *\right)$ it a group
Since $\left(D_{1}, *_{1}\right)$ and $\left(F_{1}, F_{1}\right) \Rightarrow F_{1}$ and. We have F_{1} is a subgroup of $\left(D_{1}, *_{1}\right) \Rightarrow F_{1} \subseteq D_{1}$ and.
We have F_{2} ir a sugrapp of $\left(D_{2}, *_{2}\right) \Rightarrow F_{2} \subseteq F_{2}$ and $\left(F_{2}, *_{2}\right)$ ir a group
Since $\left(F_{1}, r_{1}\right)$ and $\left(F_{2},+_{2}\right)$ are boingraps $\Rightarrow\left(F_{1} \times F_{2},+\right)$ ir a group and since $F_{1} \subseteq D_{1}$ and $F_{2} \subseteq D_{2} \Rightarrow\left(F_{1} \times F_{2}\right) \subseteq\left(D_{1} \times D_{2}\right)$.

$$
\begin{aligned}
& \text { Since } F_{1} \subseteq D_{1} \text { and } F_{2}=D_{2} \Rightarrow\left(F_{1} \times F_{2}, *\right) \text { ir a subgrap of }\left(D_{1} \times D_{2}, 2\right) \\
& O K
\end{aligned}
$$

again show $a^{-1} * b \in D$

$$
\begin{aligned}
& a=\left(x_{1}, y_{1}\right), b=\left(x_{2}, y_{2}^{-9}\right) \\
& a_{i^{-1}}=\left(x_{1}^{-1},-y_{1}^{-1}\right) x\left(x_{2}, y_{2}\right)=\left(x_{1}^{-1} x_{2}, y_{1}^{-1} y_{2}\right) \in F_{1} \times F_{2}
\end{aligned}
$$

(vii) Give me an example of two groups, say D_{1}, P_{2} where $D_{1} \times D_{2}$ has a subgroup L, But there are no
subgroups F_{1} of D_{1} and F_{2} of D_{2} s.t. $L=F_{1} \times F_{2}$
[Hint: consider $\left(Z_{2},+\right) \times\left(Z_{4},+\right)^{2}$]
let $/ \alpha=(1,1)$ sand $k=(T, 1)$.
Consider $\left(z_{2},+\right) \times\left(z_{4},+\right)$.

$$
\begin{aligned}
Z_{2} & =\{0,1\}, Z_{4}=\{0,1,2,3\} \\
Z_{2} \times Z_{4} & = \begin{cases}(0,0),(0,1),(0,2),(0,3) \\
(1,0), & (1,1),(1,2),(1,3)\}\end{cases}
\end{aligned}
$$

Let $a=(1,1)$
Let $n=111$

$$
1^{2}=1+1=2 \bmod 2=0=e_{1}
$$

$$
n=2
$$

$$
\begin{aligned}
& m=111 \\
& 1^{2}=1+1=2 \\
& 1^{3}=2+1=3 \\
& 1^{4}=3+1=4 \operatorname{mad} 4=0=e_{2} . \\
& m=4 .
\end{aligned}
$$

$$
\therefore|a|=|(1,1)|=\frac{n m}{\operatorname{gcd}(n, m)}=\frac{2 \cdot 4}{\operatorname{gcd}(2,4)}=\frac{8}{2}=4
$$

$$
\therefore k=4
$$

Let $L=\left\{a, a^{2}, a^{3}, a^{4}=e\right\}$

$$
\begin{aligned}
a & =(1,1) \\
a^{2} & =(1,1)+(1,1)=(1+1,1+1)=(0,2) \\
a^{3} & =(0,2)+(1,1)=(0+1,2+1)=(1,3) . \\
a^{4} & =(1,3)+(1,1)=(1+1,3+1)=(0,0)=e \\
L & =\{(1,1),(0,2),(1,3),(0,0)\} \\
& =\{(0,0),(0,2),(1,1),(1,3)\} .
\end{aligned}
$$

© Put there are no subgraps F_{1} of D_{1} and F_{2} of D_{2} sit. $L=F_{1} \times F_{2}$.
$4 / 6$

N $\left\langle 2\right.$ Let $D=\left(z_{4},+\right) \times(U(20),).(+\bmod 4, \cdot \bmod 20)$

$$
\begin{aligned}
& z_{4}=\{0,1,2,3\} \\
& U(20)=\{1,3,7,9,11,13,17,19\} \\
& V_{\eta}|D|=\left|z_{4}\right| \times 1, U(20) \mid=4 \times 8=32
\end{aligned}
$$

(ii) What in $|(2,19)|$?

Let $m=1191$

$$
\begin{aligned}
& \text { Let } n=121 . \\
& \begin{aligned}
& 2^{2}=2+2=4 \bmod (4)=0=e_{1} \quad 19^{2}=19.19=361 \bmod z 0 \\
& \therefore|2|=2=1=e_{2} . \\
&|119|=2 .
\end{aligned} \\
& |(2,19)|=\frac{n m}{\operatorname{gcd}(n, m)}=\frac{2 \times 2}{\operatorname{gcd}(2,2)}=\frac{4}{2}=2 . \\
& |(2,19)|=2
\end{aligned}
$$

\sqrt{n}
(iii) What is $|(3,3)|$?

Let $n=|3|$
Let $m=131$.
$4 / 5$

$$
\begin{aligned}
& n=|3| \\
& 3^{2}=3+3=6 \bmod 4=2 \\
& 3^{3}=2+3=5 \bmod 4=1 \\
& 3^{4}=1+3=4 \bmod 4=0=e_{1}
\end{aligned}
$$

$$
\begin{aligned}
& m=3 \\
& 3^{2}=3.3=9
\end{aligned}
$$

$$
\begin{aligned}
& 3^{2}=3.3=9 \\
& 3^{3}=9 \cdot 3=27 \bmod 20=7
\end{aligned}
$$

$$
\begin{aligned}
& 3=9 \cdot 3=27 \bmod 20=1 \\
& 3^{3}=9 \cdot e_{2} \\
& 3^{4}=7 \cdot 3=21 \bmod 20=1=1
\end{aligned}
$$

$$
|3|=4
$$

$$
\begin{aligned}
& 13 \mid=4 . \\
& |(3,3)|=\frac{n m}{\operatorname{gcd}(n, m)}=\frac{4 \times 4}{\operatorname{gcd}(4,4)}=\frac{16}{4}=4 \\
& \therefore|(3,3)|=4
\end{aligned}
$$

Question 3:
(i) What ir the meaning of $\frac{2}{7}$ in Z_{15} ?

IT $\frac{2}{7}$ in Z_{15} means, $\left(7^{-1} .2\right) \bmod 15$. (where means $\begin{aligned} & \text { multiplication } \bmod 15 \text {, }\end{aligned}$
(ii) Why ir $\frac{5}{6}$ undefined (n omeaning) in Z_{15} ?

K/7 $\frac{5}{6}$ ir undefined in Z_{15} since 6^{-1} io undefined in $\left(Z_{15}, \cdot\right)$
(iii) complete the sentence $\frac{a}{b}$ is defined (i.e. has one and

W/V only ane meaning) in Z_{n} it and only if $b \in U(n) \ldots$.
(iv) Let $D=U\left(Z_{15}^{2 \times 2}\right)$. Is $A=\left[\begin{array}{ll}1 & 2 \\ 6 & 12\end{array}\right] \in D$?

$$
|A|=(1.12)-(2.6)=12-12=0 \notin U(15)
$$

where $U(15)=\{1,2,4,7,8,11,13,14\}$.
$\Rightarrow A$ has no inverse.
Is $B=\left[\begin{array}{ll}3 & 1 \\ 8 & 5\end{array}\right] \in D$?

$$
|B|=(3.5)-(1.8)=15-8=7 \in U(15)
$$

$\Rightarrow B$ has on inverse.

$$
\begin{aligned}
& B^{-1}=|B|^{-1}\left[\begin{array}{cc}
5 & -1 \\
-8 & 3
\end{array}\right]=7^{-1}\left[\begin{array}{cc}
5 & -1 \\
-8 & 3
\end{array}\right] \text {. } \\
& 7^{-1}=\left(7^{\phi(15)-1}\right)(\bmod 15) \\
& 15=3.5 \quad p_{1}=3, \alpha_{1}=1, \quad p_{2}=5, \alpha_{2}=1 \\
& \eta_{\phi} \phi(15)=\left(p_{1}-1\right) p_{1}^{\left(\alpha_{1}-1\right)} \cdot\left(p_{2}-1\right) p_{2}^{\left(\alpha_{2}-1\right)} \\
& =(3-1)(3)^{0} \cdot(5-1)^{2}(5)^{0}=(2 \cdot 1) \cdot(4 \cdot 1)=8 \\
& 7^{\phi(15)-1}=7^{(8-1)}=7^{7}=(\underbrace{7 \times 7}_{\underbrace{4 \times 7}_{1} \times \underbrace{7 \times 7}_{4} \times \underbrace{7 \times 7}_{1} \times 7 .}) \bmod (15) \text {. } \\
& \therefore 7^{-1}=13 \\
& B^{-1}=13\left[\begin{array}{cc}
5 & 14 \\
7 & 3
\end{array}\right]=\left[\begin{array}{cc}
65 & 182 \\
91 & 39
\end{array}\right](\bmod 15)=\left[\begin{array}{ll}
5 & 2 \\
1 & 9
\end{array}\right]
\end{aligned}
$$

D. $U\left(z_{-1}^{3 \times 3}\right)$

Rot $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 4 & 0 \\ 3 & 3 & 2\end{array}\right]$. Convince me that $A \in D$.

$$
U(9)=\{1,2,4,5,7,8\}
$$

$$
\begin{aligned}
& q)=\left\{3^{2}=3, \alpha_{1}=2\right. \\
& q=(2) \cdot(3)=6 . \\
& \phi(q)=\left(p_{1}-1\right) p_{1}^{\left(\alpha_{1}-1\right)}=(3-1) \cdot 3^{\prime}=(2)
\end{aligned}
$$

$$
\begin{aligned}
& q)=\left\{1,2, p_{1}=3, \alpha_{1}=2\right. \\
& q=3^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \phi(9)=\left(p_{1}-1\right) p_{1}^{\left(\alpha_{1}-1\right)}=(3-1) \cdot 3=1 \cdot\left|\begin{array}{ll}
4 & 0 \\
3 & 2
\end{array}\right|=1 \cdot[(4.2)-(0.3)]=1.8=8 \in U(9) \\
& |A|=1,(9) \Rightarrow A \text { ir invertible } \Rightarrow A \in D .
\end{aligned}
$$

$n / 5$

$$
\begin{aligned}
& {\left[\begin{array}{ll:ll:lll}
3 & 3 & 2 & 0 & 0 & 1 & 1
\end{array}\right.} \\
&-3 R_{1}+R_{3} \rightarrow R_{3}
\end{aligned} \Rightarrow\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 4 & 7 & 0 \\
0 & 3 & 2 & 6 & 0 & 1
\end{array}\right]
$$

$$
\begin{array}{r}
-3 R_{2}+R_{3} \rightarrow R_{3} \Rightarrow\left[\begin{array}{lll:lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 4 & 7 & 0 \\
0 & 0 & 2 & 3 & 6 & 1
\end{array}\right] \\
2^{-1}=32 \bmod 9=5
\end{array}
$$

$$
2^{-1}=2^{\phi^{(9)-1}}=2^{5}=32 \bmod 9=5
$$

$$
\begin{aligned}
2^{-1} & =2 \\
2^{-1} R_{3} & \Rightarrow\left[\begin{array}{lll:lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 4 & 7 & 0 \\
0 & 0 & 1 & 6 & 3 & 5
\end{array}\right]
\end{aligned}
$$

$$
\therefore A^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 7 & 0 \\
6 & 3 & 5
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Find } A^{-1} \text { [apply row operations }\left[A_{i} I_{3}\right] \text { till we get }\left[I_{3} \mid A^{-1}\right] \text {. } \\
& {\left[\begin{array}{lll:lll}
1 & 0 & 0 & 1 & 0 & 0 \\
2 & 4 & 0 & 0 & 1 & 0 \\
3 & 3 & 2 & 0 & 0 & 1
\end{array}\right] \quad-2 R_{1}+R_{2} \rightarrow R_{2} \Rightarrow\left[\begin{array}{lll:lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 4 & 0 & 7 & 1 & 0 \\
3 & 3 & 2 & 0 & 0 & 1
\end{array}\right]} \\
& 4^{-1}=4^{\phi(9)-1}=4^{6-1}=4^{5}=(\underbrace{4 \times 4}_{7} \times \underbrace{4 \times 4}_{7 \times 4} \times 4) \bmod 9 \\
& \underbrace{7 \times 7}_{(4 \times 4) \bmod 9} \\
& 4^{-1} R_{2} \Rightarrow\left[\begin{array}{lll:lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 4 & 7 & 0 \\
3 & 3 & 2 & 0 & 0 & 1
\end{array}\right] \text {. }
\end{aligned}
$$

(vi) Let A as in (v). Solve over Z_{q}. Find x_{1}, x_{2}, x_{3} in Z_{q}
s.1. $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]-\left[\begin{array}{l}2 \\ 7 \\ 9\end{array}\right] \quad\left[\begin{array}{r}\text { Hint: Multiply both sided of the } \\ \text { equation by } A^{-1}\end{array}\right]$ 隹 equation by A^{-1}.

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=A^{-1}\left[\begin{array}{l}
2 \\
7 \\
9
\end{array}\right] }=\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 7 & 0 \\
6 & 3 & 5
\end{array}\right]\left[\begin{array}{l}
2 \\
7 \\
9
\end{array}\right] \\
&=\left[\begin{array}{l}
2 \\
3 \\
6
\end{array}\right] \\
& \therefore x_{1}=2, \quad x_{2}=3, x_{3}=6 \text { in } z_{9} .
\end{aligned}
$$

HW III: MTH 530, Fall 2017

Ayman Badawi

QUESTION 1. Let $(D, *)$ be a group (D need not be abelian). Assume $|a|=27$ for some $a \in D$. Prove that D has a subgroup with 9 elements.(Max 3 lines proof])
QUESTION 2. Let $(D, *)$ be an abelian group with 35 elements. Prove that there is an element $a \in D$ such that $D=\left\{a, a^{2}, \ldots, a^{35}\right\}$ (Max 5 lines proof])
QUESTION 3. Let $(D, *)$ be a group with $n<\infty$ elements. Prove that $a^{n}=e$ for every $a \in D$ (Max 3 lines proof])
QUESTION 4. Let $D=\left(Z_{12}, *\right) \times(U(5),$.
a) Find $|(4,2)|$ (note $1 \in\left(Z_{12},+\right)$ and $\left.|1|=12\right)$
b)Convince me that D has a subgroup with 24 elements.

QUESTION 5. Let $(D, *)$ be a group such that $|D|=q_{1} q_{2}$ where q_{1}, q_{2} are primes. Assume that for some $a, b \in D$, where $a \neq e$ and $b \neq e$, we have $a^{22}=a^{5}, b^{16}=b^{9}$, and $a * b=b * a$. Find $|D|$. I claim that $D=\left\{c, c^{2}, \ldots, c^{q_{1} q_{2}}=e\right\}$ for some $c \in D$. Prove my claim.(Max 6 lines)
QUESTION 6. Given $H=\{0,5,10\}$ is a subgroup of $\left(Z_{15},+\right)$. Find all distinct left cosets of H in D.
QUESTION 7. (Radicals). Let $(D, *)$ be a group such that $|D|=n<\infty$. Let m be a positive integer such that $g c d(n, m)=1$. Let $a \in D$. Prove that there exists an element $b \in D$ such that $b^{m}=a$ (i.e., $\sqrt[m]{a} \in D$, where $\sqrt[m]{a}=b \in D$ means $b^{m}=a$)(three lines proof. You may need the fact from number theory or discrete math that says if $\operatorname{gcd}(m, n)=k$, then there are two integers w, x in Z such that $k=w m+x n$)

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
6)

$$
\begin{aligned}
& H=\{0,5,10\} \leqslant\left(\mathbb{D}_{15},+\right) \\
& 0+H=\{0,5,10\} ; 1+H=\{1,6,11\} ; 2+H=\{2,7,12\}, \\
& \eta / 3+H=\{3,8,13\} ; 4+H=\{4,9,14\}
\end{aligned}
$$

7) $|(D, *)|=n, \operatorname{gcd}(m, n)=1$ and $a \in D$. Prove: $\exists b \in G: b^{m}=a$ $\operatorname{gcd}(m, n)=1 \Leftrightarrow \exists x, y \in \mathbb{Z}: m x+n y=1$
Then $a^{m x+n y}=a^{m x} * a^{n y}$

$$
\begin{aligned}
& \Rightarrow a=a^{m x} * e \\
& \Rightarrow a=\left(a^{x}\right)^{m} \text {. Let } b=a^{x} \text { and we are done. } \\
& \Rightarrow a=b^{m} \text { Q }
\end{aligned}
$$

5) $(D, *):|D|=q_{1} q_{2}$

$$
a^{22}=a^{5} \Rightarrow a^{17}=e ; b^{16}=b^{9} \Rightarrow b^{7}=e \Rightarrow|a|=17 ;|b|=7
$$

$(\because|a| \mid 17 \text { and } a \neq e \text {, sola } \mid=17 \text {, and }|b| \mid 17 \text { and } b \neq e \text {, so }|b|=7)^{b c}$
$\Delta K|a * b|=17 \times 7=119.119 \mid q_{1} q_{2} \Rightarrow q_{1}=7, q_{2}=17$.
IV $\therefore|p|=q_{1} q_{2}=7 \cdot 17=119$. Let $\not a * b=c$, then
$\bar{L} / \bar{D} D=\left\langle c, c^{2}, \ldots, c^{n+22=119}=e\right\}, \quad Q \in D$
4) $D=\left(T_{12}, *\right) \times(u(5), \cdot)$
a) $|(4,2)|=\frac{141 \times 121}{\operatorname{ged}(141,121)}=\frac{3}{3}=3$.
b) Let the subgroup be H.
$|H|=24 \Rightarrow 24| | D \mid(\because D$ is Abelian and finite)

$$
\langle\eta
$$

3) $|P|=n$. Let $a \in D$ such that $|a|=m$.

$$
V_{\bar{y}} \Rightarrow m \mid n \Rightarrow a^{n}=a^{k m}=\left(a^{m}\right)^{k}=e . \quad Q \in D
$$

i) $|a|=27, a \in D \Rightarrow 27 / 10 \mid$

$$
\mathrm{h} /<\eta \Rightarrow\left(a^{3}\right)^{9}=e
$$

Let the subgroup be $H=\left\{a^{3},\left(a^{3}\right)^{2},\left(a^{3}\right)^{3}, \ldots,\left(a^{3}\right)^{9}=e\right\}$. QeD
2) $|(D, *)|=35$. D is Abelian.
$\Rightarrow \exists H \leqslant 0$ st. $|H|=7$ and $\exists F \leqslant D$ st. $|F|=5$.
$|H|$ and $|F|$ are prime, so $H=\left\{c, c^{2}, c^{3}, \ldots c^{7}=e\right\}$. and $F=\left\{b, b^{2}, b^{3}, b^{4}, b^{5}=e\right\}$
$\Rightarrow \exists c \in \|, b \in F$ such that $|a|=7$ and $|b|=5$.

$$
\Rightarrow|a * b|=35 .
$$

Let $c * b=a$.
Then $D=\left\{a, a^{2}, \cdots, a^{35}\right\} \cdots Q \in$

$$
\text { HTH } 530
$$

Abstract Algebra I.
By: Ayman Badawi

$$
\text { HW } 4
$$

Name, Yarmine ElAshi

$$
\text { ID: } 73 B
$$

HW IV: MTH 530, Fall 2017

Ayman Badawi

QUESTION 1. (Example of infinite group where each element has a finite order) We know that if F_{1} and F_{2} are
subgroups of a group D, then $F_{1} \cup F_{2}$ need not be a subgroup of D. Now for each $n \in N^{*}$, let $F_{n}=\left\{x \in C^{*} \mid x^{n}=1\right\}$.
a) Prove that $L=\bigcup_{i=1}^{\infty} F_{i}$ is a subgroup of (C^{*}, .
b) For each $n \in N^{*}$, show that L has an element of order n (Hint: What is that order of $e^{\frac{3 n i}{=}}$ where $\left.i=\sqrt{-1}\right)$?
c) For each $n \in N^{*}$, how many elements of order n does L have?
(i) We know $x=\frac{8}{12}+Z \in D$. Find $|x|$.
(ii) Let $F=\{y \in D| | y \mid=12\}$. Find $|F|$.
(iii) Fix an integer $m \in N^{*}$ and let $F=\{y \in D| | y \mid=m\}$. Can you guess what is $|F|$?
(iv) For each $n \in N^{*}$, construct a subgroup of D with n elements.

QUESTION 3. Let $D=\left(Z_{4},+\right) \times\left(Z_{5}^{*}, \cdot\right)$ and $H=\{(a, b) \mid a \in\{0,2\}, b \in\{1,4\}\}$. Then $H<D$ (you do not need to check this). Let $F=D / H$. Find the elements of the group $(D / H, \Delta)$. Find $|F|$. Construct the Caley table of F and for

QUESTION 4. Let $(D, *)$ be a group, $H<D$, and $a \in D$. Suppose that $|a|=n<\infty$. We know that $x=a * H \in D / H$,
Let $m=|x|$. Prove that $m \mid n$. (Max 2 lines proof. Note that x^{k} mean $\left.a * H \Delta a * H \Delta \cdots \Delta a * H=a^{k} * H\right)$

Faculty information

Ayman Badawi, Department of Mathematies \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates,

Question 1) (Example of infinite grap where each element has a finite oder). We know mat F_{1} and F_{2} are sulognops of D, then $F_{1} \cup F_{2}$ need not be a subgroppof D.

Now for each $n \in \mathbb{N}^{*}$, let $F_{n}=\left\{x \in C^{*} \mid x^{n}=1\right\}$.
(a) Prove that $L=\bigcup_{i=1}^{\infty} \mathrm{Fi}_{i}$ ir a rubroup of $\left(C^{*}\right.$, .) Using $Q \mid(i)$ from $H W^{2}$, we have integer m, sot. $F=\left\{a \in D \mid a^{m}=e\right\}$ grap, and we fix a position of $D . \quad F=F_{n}$, and $e=1$. then $(F, *)$ it a wave $D=C^{*}$,
In this case, we ripe rp at $\left(C^{*},.\right)$.
$\therefore\left(F_{n}, \cdot\right)$ ir a subgroup $L=\bigcup_{i=1}^{\infty} F_{i}$ ir a rubgrop of $\left(C^{*},.\right)$.

- same $i \in \mathbb{N}^{*}$

Let $a \in L_{\infty}$

$$
\begin{aligned}
& a \in \bigcup_{i=1}^{\infty} F_{i} \Rightarrow a \in F_{i} \text { for some } i \in \mathbb{N}^{*} \\
& \Rightarrow a F_{i}^{*} \text { a subgroup }+C^{*} \\
& \text { since } F_{i} \text { for some } i \in
\end{aligned}
$$

since $F_{i}^{10} a^{-1} \in F_{i}$ for sone $i \in \mathbb{N}^{+}$

$$
\Rightarrow \quad\left(a^{-1}\right)^{i}=1
$$

Let $b \in L$

$$
\Rightarrow b^{j}=1
$$

we have $n=i j \in \mathbb{N}^{*}$, we needtornow $a^{-1} b \in L$.

$$
\begin{aligned}
& \text { we have } n=i j \in \mathbb{N}^{*} \text {, we needtornow } \\
& \text { we } \\
&\left.\left(a^{-1} b\right)^{n}=\left(a^{-1} \cdot b\right)^{i j}\right]^{i j} \cdot\left(b^{j}\right)^{i} \\
& \prod_{1}=\left(a^{i j} b^{i j}=\right. {\left[(1)^{j} \cdot(1)^{i}=1\right.}
\end{aligned}
$$

$\sin e c^{*}$
ir abclian

$$
\begin{aligned}
& \text { sinecct } \\
& \text { ir abolian } \\
\Rightarrow & a^{-1} b \in F_{n} \text { for some } n \in \mathbb{N}^{*} \\
& \bigcup^{*} F_{i}=L
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad a^{-1} b \in F_{n}^{\infty} \\
& \Rightarrow \quad a^{-1} b \in \bigcup_{i=1}^{\infty}=L
\end{aligned}
$$

\therefore we have shown that $L=\bigcup_{i=1}^{\infty} F_{i}$ in a rubgrap of $\left(C_{i},\right)$

$$
\sin
$$

(b) For each $n \in \mathbb{N}^{*}$ show mat L has an element of
(that: what io me order of $e^{\frac{2 \pi i}{n}}$ where $i=\sqrt{-1}$).
Let $x=e^{\frac{2 \pi i}{n}}$

$$
\begin{aligned}
x^{n} & =e^{\frac{2 \pi i}{n}} \\
& =e^{2 \pi i}=\cos (2 \pi)+i \sin (2 \pi)=1 \\
\text { element } x & =e^{\frac{2 \pi}{n}}
\end{aligned}
$$

h/4. For each $n \in \mathbb{N}^{*} L$ hear an dement $x=e^{\frac{2 \pi i}{n}}$ of order n.
(c) For each $n \in \mathbb{N}^{+}$, how many elements order n doer L have?

$$
\text { Let } x=e^{\frac{2 \pi i}{n}} \text {, then } x^{k}=e^{\frac{2 \pi k i}{n}} \text { for some } k \in \mathbb{N}^{*}
$$

$$
\begin{aligned}
& x=e^{\frac{2 \pi i}{n}} \text {, then } x^{k}=e \\
& \left(x^{k}\right)^{n}=\left(e^{\frac{2 \pi k i}{x}}\right)^{k}=\cos (2 \pi k)+i \sin (2 \pi k)=1
\end{aligned}
$$

$$
\Rightarrow \quad\left|F_{n}\right|=\infty
$$

Let $n \in N^{*}$

Then $x^{n}-1=0$ has exactly n distinctations over C. In particular,
$\left(e^{x},-\right)$ has a unique subgrouplof order n n generated by $e^{\frac{2 \pi i}{n}}(\sin 4 e$

$$
\left.\left|e^{\frac{2 \pi i}{n}}\right|=n\right) \cdot 2 e t a=e^{\frac{2 \pi i}{n}}
$$

$$
\text { Then } D=\left\{a, a^{2}, a^{3}, \ldots, a^{n}=1\right\}
$$

We know $\left|a^{k}\right|=\frac{n}{g d d(k, n)}$, Thus if $|d|=n$, then
 are exactly $\phi(\vec{n})$ elements of force n

Question 2: (Example of infinite gap where each element has a finite order).
Consider the grep $D=(Q / z, \Delta)$ as usual for every $a, b \in Q$ we have $(a+z) \Delta(b+z)=(a+b)+z$.
(i) We know $x=\frac{8}{12}+z \in D$. Find $|x|$.

$$
x=\frac{8}{12}+z=\frac{2}{3}+z
$$

$\frac{8}{12}$ in reduced form in $\frac{2}{3}$, where $\operatorname{gcd}(2,3)=1$.

$$
\begin{aligned}
& \text { reduced form } \\
& \Rightarrow \quad|x|=\left|\frac{8}{12}+z\right|=\left|\frac{2}{3}+z\right|=3
\end{aligned}
$$

hah
(ii) Let $F=\{y \in D| | y \mid=12\}$. Find $|F|$. we have $\operatorname{gcd}(1,12)=1$.

$$
\begin{aligned}
& \begin{array}{l}
\therefore F=\left\{\left(\frac{1}{12}+z\right),\left(\frac{5}{12}+z\right),\left(\frac{7}{12}+z\right),\left(\frac{11}{12}+z\right)\right\} \Rightarrow|F|=4 . \\
\left.\therefore a \in z_{n}^{+} \mid \operatorname{gcd}(a, n)=1\right\}
\end{array} \\
& \begin{array}{l}
\therefore|F|=|U(12)| \text {, where } U(12)=\left\{a \in z^{2}\right. \\
12=2^{2} \cdot 3
\end{array} \\
& =\phi(12) \quad \text { since } 12=2^{2} \cdot 3, \alpha_{1}=2 \text {. } \\
& =\left(p_{1}-1\right) p_{1}^{\left(\alpha_{1}-1\right)}\left(p_{2}-1\right) p_{2}^{\left(\alpha_{2}-1\right)} \quad p_{2}=3, \alpha_{2}=1 \\
& \begin{array}{l}
=(2-1) 2^{1} \cdot(3-1) \cdot 3^{0} \\
=2 \cdot 2=4 .
\end{array}
\end{aligned}
$$

$|F|=4$ which can be seen above.
(iii) Fix an integer $m \in Z \quad m \in \mathbb{N}^{*}$ and let $F=\{y \in D| | y \mid=m\}$ con yo guess what ir $|F|$?

$$
\begin{aligned}
& \text { a guess what } \\
& |F|=|U(m)|=\phi(m)
\end{aligned}
$$

(iv) Fo, each $n \in \mathbb{N}^{*}$, construct a rogneps of D with n elements.

For each $n \in \mathbb{N}^{+}$, we have $a_{n}=\frac{1}{n}+Z \in D$ where $\quad\left|a_{n}\right|=n$.
we have $H_{n}=\left\{a_{n}, a_{n}^{2}, a_{n}^{3}, \ldots, a_{n}^{n}=e\right\}$
ir a subgroup of D.
\therefore We can construct a rubgrap t_{h} of D, where

$$
\begin{aligned}
& \text { construct a rubgrap } H_{n} \text { of } D, \text { where } \\
& H_{n}=\left\{\frac{1}{n}+Z, \frac{2}{n}+Z, \frac{3}{n}+Z, \cdots, \frac{n-1}{n}+Z, Z\right\} \\
& =n .
\end{aligned}
$$

$$
\text { where }\left|H_{n}\right|=n
$$

Question 3 Let $D=\left(z_{4},+\right) \times\left(z_{5}^{*}, \cdot\right)$ and $H=\{(a, b) \mid a \in\{0,2\}, b \in\{1,4\}\}$ Then $H \triangle D$ (yes donot need to check this).
Let $F=D / H$. Find the elements of the grape $(D / H, \Delta)$.
Find $|F|$. Construct coly table of F and for each $a \in F$ find $|a|$.

$$
\begin{aligned}
& \text { (1) Find the dement of the drop }(D / H, \Delta) \text {. } \\
& (3,1),(3,2),(3,3),(3,4) \\
& \begin{array}{l}
(0,1) * H=\{(0,1),(0,4),(2,1),(2,4)\}=H \\
(0,2),(0,3),(2,2),(2,3)\}
\end{array} \\
& \begin{array}{l}
(0,2) \times H=\{(0,2),(0,3),(2,2),(3,4)\} \\
* H=\{(1,1),(1,4),(3,1),
\end{array} \\
& \begin{array}{l}
(1,1) * H=\{(1,2),(1,3),(3,2),(3,3)\} \\
(1,2) * H=\left\{\begin{array}{l}
\text { 2 }
\end{array}\right)
\end{array} \\
& D / H=F=\{H,(0,2) * H,(1,1) * H,(1,2) * H\} \\
& \text { (2) }|F|=4 \text {. }
\end{aligned}
$$

(3) Constuot Caleu toble of F :

θ
For each $a \in F$, find $|a|$

$$
\begin{aligned}
& 1+1)=1 \\
& |(0,2)++1|=2 \\
& 1(1,1)++1 \mid=2 \\
& (1,2)+41=2
\end{aligned}
$$

Question 4 : let $\left(D_{1} *\right)$ be a grap, $H<D$ and $a \in D$. Suppore onat $|a|=n<\infty$. We kna

Por) Not la| $=n<\infty \quad$ whate $a \in D$.
Lor $|x|=m$, ware naln

$$
\begin{aligned}
& x x^{n}=(a * H)^{m}=a^{m}+H=e^{*} H=H \\
& \Rightarrow \mathrm{malm} \text {. }
\end{aligned}
$$

MTH 530
Abrtract Algebra I.
Ayman Badawi

$$
1 W^{5}
$$

$$
\frac{58}{75}
$$

Name: Yarmine EIASS:

$$
10.7313
$$

Question 1; Let D, H be cyclic graps and $F=D \times H$
(a) If D io indite and H is infinite, prove mat F is hove cyclic.

Let D be an infinite colic grip, $\exists a \in D$ s?

$$
D=\langle a\rangle=\quad\left\{a^{i} \mid i \in z\right\}
$$

Let H be a finite egclie grap, $\exists b \in H$; where $|b|=|H|-n$.

$$
\begin{aligned}
& \text { a finite egelie group, }, b b\rangle-\left\{b, b^{2}, b^{3}, \ldots, b^{2}=e\right\} \\
& H=\langle i
\end{aligned}
$$

Then $F=D \times H=\left\{\left(a^{i}, b^{j}\right) \mid\right.$ i Z and $\left.1 \leqslant j \leqslant n\right\}$.
Let $\langle(a, b)\rangle=\left\{(a, b)^{i}=\left(a^{i}, b^{i}\right) \mid i \in z\right\}$
since $i \in z, \quad i=m n+k \quad 0 \leq k+n$

$$
\begin{aligned}
& i=m^{n}+k \quad 0 \leqslant k \\
& b^{i}=b^{m n+k} \quad b^{k} \text { since }|b|-n \\
& k \quad n \in k<n, 0 \leqslant k<n
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad b^{i}=b^{m n+k}=b^{k} \text { since } \quad i=m \leqslant k<n\right\} \\
& \therefore\langle(a, b)\rangle=\left\{\left(a^{m n+k}, b^{k}\right) \quad m, n \in z, 0 \leqslant k \leqslant\right.
\end{aligned}
$$

By construction $\langle(a, b)\rangle \subseteq F$
Let $c=\left(a^{i}, b^{j}\right) \in F$ sit. $i \neq j$
Then $\begin{array}{lll}i=m n+k & 0 \leq k<n \quad & k \neq r \\ j=m n+r & 0 \leq r<n & \text { sine }\end{array} \quad 1 \neq j$

$$
\begin{aligned}
& \text { Then } i=m n+r \quad 0 \leq r \\
&\left.j=m n+m^{m n+k}, b^{r}\right) \\
&\left(a^{i}, b^{j}\right)=\left(a^{m n+k}, b^{m n+r}\right)=\left(a^{i} \neq r \quad\left(a^{i}, b^{j}\right) \in\langle(a, b)\rangle\right. \\
& \text { since } k \neq r \quad F \in\langle(a, b)\rangle
\end{aligned}
$$

$$
\begin{array}{ll}
\text { ice } & k \neq r \\
\Rightarrow & F \nsubseteq\langle(a, b)\rangle \\
\Rightarrow & F \neq\langle(a, b)\rangle
\end{array}
$$

Hence F is never colic.

you ane not using any Result!
Assume $F=D \times H$ is cyclic
Let $L=\left\{e_{p}\right\} \times H<F$, a contradiction since L is f in; te and F is in finite cyclic.
(b) If D is infinite and H ir infinite, prove mat F io never cyclic. Let D be an infinite yolic gap, then \exists a $\in D$ int.

$$
D=\langle a\rangle=\left\{a^{i} \mid i \in z\right\}
$$

Let H be an infinite cyclic grope, men $\exists b \in H$ st.

$$
H=\langle b\rangle=\left\{b^{j} \mid j \in z\right\}
$$

Then $F=D \times H=\left\{\left(a_{1}^{i}, b^{j}\right) \mid i, j \in z\right\}$
Let $\langle(a, b)\rangle=\left\{(a, b)^{i}=\left(a^{i}, b^{i}\right) \mid i \in Z\right\}$
By construction it it clear that $\langle(a, b)\rangle \subseteq F$ ret $c=\left(a^{i}, b^{j}\right) \in F$ s.f. $\quad i \neq j$
(c) Assume that B is finite and H ir finite. Prove mat F is cydic if and only if $\operatorname{gcd}(|D|,|+|)=1$.
Let D be a finite oyollc grow, hen $\exists a \in D$ where

$$
\begin{aligned}
& \left.b e \text { a finite aclu group, } a^{2}, a^{3}, \ldots, a=e\right\} \\
& \text { sot. } D=\langle a\rangle=\left\{a, a^{n}, \text { cyclic orop, men } \exists b \in D\right. \text { who }
\end{aligned}
$$

Let H be a finite cyclic goop, men $\exists b \in D$ w

$$
\begin{aligned}
& \text { H be a finite cyclic gop, wen } \left.\exists b \in b^{m}\right\} \\
& H=\langle b\rangle=\left\{b, b^{2}, b^{3}, \ldots, b^{m}=e\right\} \\
& \text { sit. }
\end{aligned}
$$

$\begin{aligned} & F=D \times H=\left\{\left(a^{i}, b^{j}\right) \mid 1 \leqslant i \leqslant n, \quad 1 \leqslant j \leqslant n\right\} \Rightarrow|F|=m \\ & \Rightarrow \text { Suppose } F \text { is cyclic, men } \exists c \in F \mid=m n\end{aligned}$ Let $c=(a, b) \in F \Rightarrow|(a, b)|=m n$.

4

$$
\begin{array}{ll}
\text { Ne known } & |(a, b)|=m n \\
\text { since } & m n
\end{array}
$$

$$
\begin{aligned}
& \text { gop, wen } \exists b \in D \\
& \left.\begin{array}{l}
\left\{b, b^{2}, b^{3}, \ldots, b^{m}=e\right\} \\
\left.\left.b^{j}\right) \mid 1 \leqslant i \leqslant n, \quad 1 \leqslant j \leqslant n\right\} \\
\exists c \in F \quad|c|=m n \\
\exists F \Rightarrow|(a, b)|=m n \\
|(a, b)|=\mid c m \\
\left\lvert\,(n, m)=\frac{m n}{\operatorname{gcd}(n, m)}\right.
\end{array}\right) \Rightarrow|F|=m n \\
& |(a, b)|=m n
\end{aligned}
$$

$$
\Rightarrow \quad \operatorname{gcd}(n, m)=1
$$

$$
\operatorname{gcd}(n, m|,|H|)=1
$$

Suppose $\operatorname{gcd}(|0|,|H|)=\operatorname{gcd}(n, m)=1 \square$
We need to show F cyclic
Let $c=(a, b) \in F$ men $|(a, b)|=1$
we have fond $c \in F$ s.t. $|c|=n m=|F|$, since F ir finite

$$
\begin{aligned}
F= & \langle c\rangle=\langle(a, b)\rangle \\
& \Rightarrow F \text { is cyclic. }
\end{aligned}
$$

(d) In view of (c), we know that $F=\left(z_{25},+\right) \times\left(z_{4},+\right)$ is a cyclic grape.
Find all subgroups of F.

$$
\begin{aligned}
& \text { Find all } \\
& \left(z_{25},+\right)=\{0,1,2,3, \ldots, 24\} \\
& \left(z_{4},+\right)=\{0,1,2,3\}
\end{aligned}
$$

We have $\langle n\rangle=z_{25}$ when $\operatorname{gcd}(n, 25)=1$
So for $\operatorname{gcd}(n, 25) \neq 1, n=5,10,15,20$
$\operatorname{gcd}(5,25)=\operatorname{gcd}(10,25)=\operatorname{gcd}(15,25)=\operatorname{gcd}(20,25)=5$

$$
\begin{aligned}
& \operatorname{gcd}(5,25)=\operatorname{gca} \\
& |5|=\left|1^{5}\right|=\frac{25}{\operatorname{gcd}(5,25)}=\frac{25}{5}=5 \\
& \therefore|5|=|10|=|15|=|20|=5 \\
& \Rightarrow \quad\langle 5\rangle=\langle 10\rangle=\langle 15\rangle=\langle 20\rangle=\{0,5,10,15,20\} \text {, of }\left(z_{25}+1\right)
\end{aligned}
$$

We have $\langle n\rangle=z_{4}$ when $\operatorname{gcd}(n, 4)=1$.
so for $\operatorname{gcd}(n, 4) \neq 1$, we have $n=2$.

$$
\begin{aligned}
& \operatorname{gcd}(2,4)=2 . \\
& |2|=\left|1^{2}\right|=\frac{4}{\operatorname{gcd}(2,4)}=\frac{4}{2}=2 .
\end{aligned}
$$

$$
\begin{aligned}
& 2\left|=\left|1^{2}\right|=\frac{4}{\operatorname{gcd}(2,4)}=\frac{2}{\langle 2\rangle}=\{0,2\} \text { ir a subgrop of }\left(z_{4},+\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \langle 2\rangle=\{0,1) \\
& \text { subgroups of } F: \quad \operatorname{gcd}\left(\left|z_{25}\right|,|\{0\}|\right)=\operatorname{gcd}(25,1)=1 \Rightarrow \text { cyclic. } \\
& \left(z_{25},+\right) \times\{0\} \quad \operatorname{gcd}\left(|\{0\}|,\left|z_{4}\right|\right)=\operatorname{gcd}(1,4)=1 \Rightarrow \text { cyclic. } \\
& \{0\} \times\left(z_{4},+\right) \quad \operatorname{gcd}(|\langle 5\rangle|,|\{0\}|)=\operatorname{gcd}(5,1)=1 \Rightarrow \text { cyclic } \\
& \langle 5\rangle \times\{0\} \quad \operatorname{gcd}(|\{0\}|,|\langle 2\rangle|)=\operatorname{gcd}(1,2)=1 \Rightarrow \text { cyclic } \\
& \{0\} \times\langle 2\rangle \quad \operatorname{gcd}(|\langle 5\rangle|,|\langle 2\rangle|)=\operatorname{gcd}(5,2)=1 \Rightarrow \text { cyclic } \\
& \langle 5\rangle \times\langle 2\rangle \quad \Rightarrow \text { acyclic. }
\end{aligned}
$$

$$
\left(z_{25},+\right) \times\left(z_{4},+\right) \quad \Rightarrow \text { ayclic. }
$$

$$
504
$$

$$
\sqrt[i n]{2}
$$

$$
\begin{array}{ll}
1 & \ln \\
0 & \frac{11}{\hat{j}} \\
0 & n \\
0 & n \\
0
\end{array}
$$

$$
\xi
$$

$$
\begin{aligned}
& \frac{\vec{v}}{j} \\
& \text { o } \\
& \text { j} \\
& j
\end{aligned}
$$

ero

$$
\begin{array}{lll}
n & y_{1} \\
n & i n \\
\end{array}
$$

$$
\frac{E}{3}
$$

$$
\text { ค } \hat{S}_{\sim}^{n} \hat{v}^{n} \text { e }
$$

$$
\begin{aligned}
& ={ }_{2}^{5} \\
& =1_{1}^{5} \\
& 1_{81}^{\prime} 1_{1}^{\prime} b \\
& (1-c) \\
& \text { vindo }
\end{aligned}
$$

छ

$$
3^{1}=3
$$

she we have sly
me wed orit har to
mat v(16)
nond we 1 have oly th
elerentrin U(16) have

(b) Let $f=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 4 & 1 & 8 & 7 & 6 & 2\end{array}\right) \in S_{8}$

Find $1 f 1$

$$
\begin{aligned}
& \text { Find if } \\
& f=(134) \cdot(258) \circ(67) \in S_{8} \\
& \text { If } 1=\operatorname{lcm}(3,3,2)=6
\end{aligned}
$$

Is $f \in A_{8}$?
$f=\alpha 0 \beta \circ \gamma$
$\alpha \rightarrow$ even ton
B \rightarrow even for
$D \rightarrow$ oar fm
$(\beta \circ \gamma) \rightarrow$ odd fen
$\alpha_{0}(\beta \circ \gamma) \rightarrow$ odd fen
$\Rightarrow \quad f$ in an odd foo.
$f=A_{p}$
$n=\max \{$ if
(c) Let $n=\max \left\{|f|\right.$, where $\left.f \in A_{9}\right\}$
$n=9$ since $f=\left(a_{1} a_{2} \ldots a_{9}\right) \in A_{9}$

(d) Let $f \in \sin (n \geq 3)$ be on odd for. Prove mat (ar Iflir an even number.
enos t

$$
\begin{aligned}
& \text { If ir an ever } \\
& f=\left(a_{1} a_{2} \cdots a_{k}\right) \\
& \text { irk } \left.\left(a_{1} a_{k}\right) \circ\left(a_{1} a_{k-1}\right) 0 \ldots a_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Since } \\
& \text { Let } n=|f| \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& k) \circ(a, \\
& (k-1) \text { offer } \\
& \text { in on od fen } \\
& k-1=2 m+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { We know } \\
& \text { An } \triangle S_{n} \\
& \text { Let } m=\mid \text { foAn } \mid
\end{aligned}
$$

